
EVE: On-Board Process Planning and Execution

Steve Tanner, M. Alshayeb, E. Criswell, M. Iyer, A. McDowell, M. McEniry, and K. Regner
Information Technology and Systems Center

University of Alabama in Huntsville
S345 Technology Hall

Huntsville, Alabama 35899
stanner@itsc.uah.edu

www.itsc.uah.edu

The Information Technology and Systems Center
(ITSC) at The University of Alabama in Huntsville
(UAH) has designed and is now developing an
innovative processing framework aimed at helping
science users exploit the unique constraints and
characteristics of the on-board satellite data and
information environment. The Environment for On-
Board Processing (EVE) system will serve as a proof-
of-concept of advanced information systems
technology for remote sensing platforms. Because
data will be processed as it’s collected, such a system
will produce custom data products on-board and in
real-time. First, the EVE editor allows science users
to build processing plans, which are compatible with
the constraints of on-orbit computing environments.
The EVE on-board, real-time processing
infrastructure in turn, will upload, schedule, and
control the execution of these plans. Operations
within the plans provide capabilities focused on the
areas of autonomous data mining, classification and
feature extraction. These will contribute to Earth
Science research applications, including natural
hazard detection and prediction, fusion of multi-sensor
measurements, intelligent sensor control, and the
generation of customized data products for direct
distribution to users. A ground-based testbed is being
created to provide testing of EVE and associated
Earth Science applications in a heterogeneous
embedded hardware and software environment. ∗

1 INTRODUCTION
 According to NASA’s Earth Science Vision, on-board
processing will play a significant role in the next
generation of Earth Science missions, providing the
opportunity for greater flexibility and versatility in
measurements of the Earth’s systems. Such on-board
processing can contribute to many Earth Science research
applications, including natural hazard detection and
prediction, intelligent sensor control, and the generation of
customized data products for direct distribution to users.
Ideally, the availability of custom processing, feature
extraction, and data mining on-board satellites can allow
end users to specify their own data products through the
definition of a processing plan. On-board processing will
reduce the volume of delivered data since only the data

∗ Financial and technical support for this effort is provided by NASA’s
Earth Science Technology Office.

specified by the processing plan is transmitted to the user.
This in turn will improve the accessibility and utility of
Earth Science data sets, and overcome, in part, the
autonomous nature of satellite sensor data.
 The Information Technology and Systems Center (ITSC)
at the University of Alabama in Huntsville (UAH) has
begun the second year of a three-year research and
development effort. The goal of the effort is to build a
prototype system which will allow research scientists to
build processing plans and execute those plans on on-
board processing environments. In this paper, the team
presents the current efforts and progress of the project.
 This work, to address on-board satellite data processing,
is based on the Center’s existing custom processing,
feature extraction, and data mining technologies.
Therefore, the Environment for On-Board Processing
(EVE) benefits from the ITSC’s experience with scientific
data mining and knowledge discovery. Other current ITSC
research projects deal with the distributed and
heterogeneous nature of Earth Science data sets, as well as
data integration, data fusion, and high-performance
networking. Based on this background and a broad range
of research affiliations, the ITSC has designed and is now
developing a new breed of processing system capable of
handling the unique constraints and characteristics of the
on-board data and information environment. The final
EVE system will be adaptable to new Earth Science
measurements, and will enable new information products.
 While the ITSC has made significant progress in custom
processing [1,2,3,4] and data mining technology [5,6], the
current architectures were not designed to be optimal for
on-board processing in an autonomous environment. In
particular, the on-board processing environment will
include significant hardware constraints, coupled with
requirements for processing real-time streams of sensor
measurements. Furthermore, the need for fusion of multi-
sensor inputs, both on-board a single craft, and ultimately
through communication between crafts, is of great
importance. Therefore, EVE requires a complete re-
engineering of current well-established software, ranging
from fundamental changes in basic system architecture
through new implementation of processing modules for
even greater efficiency. This approach will reduce the risk,
cost, and time associated with development of a full suite
of on-board processing functionality. Integral to this
effort is the simultaneous development of a ground-based

testbed, which enables researchers to perform testing and
certification in an environment simulating the expected on-
board processing environment.
 During the latter phases of this research, the ITSC hopes
to take advantage of a flight of opportunity, which would
allow an actual on-board test of the EVE prototype on an
Uninhabited Aerial Vehicle (UAV) experimental flight.
These high altitude UAVs fly meteorological instruments
for extended time periods (> 18 hrs). By collaborating
with NASA scientists who are planning a UAV
experiment, the ITSC will define an on-board processing
plan that is meaningful in the UAV context. Goals of such
a flight may include some autonomous control and flight
planning based upon real-time data mining of sensor input.
 The ITSC is embarking on a phased approach for this
research, advancing the custom processing and data mining
software from NASA’s Technology Readiness Level
(TRL) 2 to TRL 5 over a three-year period. This means
that the system will progress from a purely theoretical
research endeavor into a demonstrable system.

2 EVE System Requirements
 The primary goal of the EVE project is to prototype a
processing framework for the on-board satellite
environment that includes data mining, classification, and
feature extraction capabilities in order to support multi-
sensor fusion, intelligent sensor control, and real-time
customized data product research applications. These
capabilities and applications will be tested and refined as
they are exercised in the simulated on-board environment
provided by the EVE ground-based testbed. To achieve
this goal, the EVE team has defined a set of requirements
and documented them in a System Requirements
Specification.

These include the following primary items:

• Functional requirements: Support for real-time
LINUX; Use of pre-defined and user-defined
operations; and Centralized repository of
operations and documentation.

• Processing requirements: Execution of multiple
processing plans simultaneously; Multiple
communication protocols, including streaming
data; Support for real-time polling and interrupts;
and Initiation of operations in response to
detected events.

• User Interface Requirements: Development of a
user friendly interface that provides pre-mission
plan editing and upload of operations; and System
monitoring and control functions vital to mission
success.

3 Major EVE Components
 To meet the requirements, the EVE system relies on the
concepts of Operations, Plans and Carts (Figure 1).
Operations are discrete prewritten routines that perform a
specific stand-alone function, such as an image processing
algorithm, a data mining routine, or other math or sensor
based function. These operations can be connected
together to form a plan which, when coupled with sensor
data, can perform a more abstract computation, such as
cloud detection. A plan in turn can be placed into one or
more carts, each representing a single real-time computing
unit. These carts can then be uploaded to specific on-
board systems, scheduled and executed.

Figure 1: Operations, Carts and Plans

 To accomplish the construction, testing and execution
of these plans and carts, the EVE system uses three
primary components: the editor; the on-board system; and
the ground station (Figure 2). The editor is a graphical
interface, which can be used to write and validate the plans
and carts, and is the user’s primary interface with the EVE
system. Once a plan is written and placed into carts, it is
uploaded to the on-board system, where it is scheduled for
execution. The on-board system executes the plan (via the
carts) in real-time, based upon both user processing goals
and system constraints. The ground station is the primary
communication facility between the editor and on-board
system. It also maintains a list of available operations and
plans in the system as well as the on-board platforms
available for use. The EVE system also has system
monitoring and control (SMAC) functionality, which

monitors all EVE components for malfunctions and also
collects performance metrics.

Figure 2: Major EVE Components.

3.1 EVE Editor

 The EVE editor is a graphical tool to assist in building
plans for upload and execution. To accomplish this, the
EVE editor provides the user with a set of tools and
operations and an editing workspace in which to
manipulate these plans. The user can choose operations
from a library of prewritten routines, each represented by
an icon. By dragging and dropping these icons from the
toolbar to the editing workspace, they can connect them
into a workable execution plan. This build up of a plan
also requires the user to specify the associated parameters
for each operation. The editor will validate the plan and
generate a plan file for use by the on-board platforms.
 The editor will estimate the resources the plan will
consume before it is uploaded. This estimation is based on
the operations metadata, which is provided with each
operation.
 The editor will also display other information such as
the actual resources the plan is using and any other
information sent from the ground station and the on-board
system.

3.2 EVE Ground Station

 The ground station serves as the communication relay
between the editor components and the on-board systems.
Its main purpose is to keep track of what deployment
systems are available and to relay messages between these
systems and the EVE editor. However, the ground station,
via its System Monitoring and Control feature, also
provides system management and control functionality.
The SMAC functionality includes system resource
monitoring as well as the ability to issue control signals to
processes executing on the on-board system. The ground
station also maintains a library of available operations and
their metadata.

3.3 EVE On-board Systems

 The EVE on-board components provide a context for
real-time execution of plans. The primary responsibilities
include managing a plan’s lifecycle, and coordinating with
the on-board real-time operating system. This
coordination includes process scheduling and control,
resource allocation, and inter-process communication. In
addition, the EVE on-board components must also handle
the caching of operations for later execution and collect
performance information for later profiling and analysis.

4 Plans and Carts
 As stated earlier, the EVE editor allows a user to build a
processing plan which specifies a set of operations and the
data stream connections between them. These operations
have been written in a general nature and are not aimed at a
specific on-board platform. The concept of a cart is
introduced in order to package such general operations for
execution in specific real-time environments.

 A cart is a subset of a plan, which holds a sequence of
operations that can be executed as a single real-time unit.
One cart may be used for an entire plan or a plan may be
divided into several carts. Each cart contains a set of
operations and provides a set of services to those
operations. It holds metadata about the resources required
by the operations and resource usage of the platform in
which its execution is targeted. The cart also is
responsible for tracking the ID tag of the plan and the other
carts that comprise that plan.

4.1 Plans

 Plans specify a set of operations and the connections
between them. A plan specification forms a data flow
diagram where the nodes are the operations themselves and
the directed edges specify which operation consumes the
output of another. Operations may have multiple inputs,
multiple outputs, or both. A plan description must contain
all of the data necessary to execute, such as:

• Information about the operations involved.
• Parameters for the operations involved.
• Connections for all of the operations' input and

output data streams.
• Information about the graphical layout of the plan

from the editor, to preserve the appearance when
reloaded by a user at a later time.

4.2 Carts

 In a real-time system, it is difficult to schedule tasks that
depend upon multiple processes with a high degree of
intercommunication. One method for dealing with this
issue is to bundle all of the atomic operations of an entire
plan into a single process image. However, this conflicts
with the EVE goal of flexibility and modular plan
building. An approach that offers a more flexible
architecture is the construct of the cart. In effect, a cart
represents several well-defined operations, bundled into a
single process image. This bundling offers ease of
communication, resource sharing, and task scheduling
between the bundled operations within a cart. This model
lets task planners worry less about blocking
communication and process interruptions and focus more
on constructing algorithms from the available operations.
 Another interesting benefit of the cart architecture is
that it allows splitting up an entire plan into multiple sub-
sections, with each sub-section having its own priority and
resource usage profile and even its own targeted on-board
platform. In this way the scientist designing the process
can have extraneous but interesting portions of the process
to be done on an auxiliary basis, without losing focus on
the primary processing path and goals.

5 On-board System Details
 EVE’s on-board components are currently based upon
RTLinux (http://www.fsmlabs.com/), a hard-real-time

variant of the Linux kernel. RTLinux provides a real-time
microkernel that treats the Linux kernel (including all the
user space processes) as a non-real-time process. This
approach allows the use of POSIX real-time facilities
without sacrificing the convenience of standard
development for components that are not real-time-
sensitive.
 This approach allows EVE to perform most of its
bookkeeping and overhead functions in the non-real-time
environment, only using the real-time mode of operation
when executing and controlling the cart components.

5.1 Event Handling

 For some historical perspective, the first
implementation of EVE plans and operations consisted of
operations that were standalone executables that ran as
normal UNIX processes. An operation had zero or more
input streams and zero or more output streams. The
operations themselves opened the associated file handles
for each input and output as the first step of execution.
Data was read from the inputs and manipulated to produce
output. For each operation, a description file existed
describing its "geometry", which consisted of the number
of inputs, outputs, and parameters. A plan consisted of a
list of operations with their parameter specifications, and
described the connections between the input and output
streams of the operations involved. The plan executor
simply spawned each operation as a separate process and
redirected the inputs and outputs for each operation to
make the data flow in the correct directions.
 In a non-real-time environment, this implementation
works quite well. However, in a real-time environment
operations must be implemented in a different manner.
They need to make use of event handlers, with functions
that handle specific events to deal with the real-time
constraints and dearth of resources. Those functions must
be called by an entity that manages the events. The
registration of the event handlers of an operation can be
done by code in the initialization of an operation, or can be
done by something external to the operation itself. In the
case of EVE, this registration is the responsibility of the
cart.
 To illustrate the difference in the non-real-time and real-
time implementation of an operation, consider a very
simple pixel-by-pixel threshold operation that produces a 0
if the input is less than 128 and 256 if the value is 128 or
larger. The non-real-time version would simply read
characters until and end-of stream was reached. For each
character it would write the thresholded values onto the
output stream. The real-time version would instead handle
events rather than input and output. One such event would
be "new value arrived". The operation would contain a
function that is specifically registered to handle that event,
and would be executed at that time. Another event could
be "new threshold parameter", allowing the changing of the
threshold value being used.
 For EVE, the cart provides the event dispatching for the
operations. Data streaming can be implemented as

dispatching of events with the data being part of the event
messages.
 It may be necessary for operations themselves to
produce events. For example, when an operation produces
new output based upon incoming data, it can create an
event specifying that output has been produced. The cart
would then handle that event and pass the data to the next
operation in the "data stream" by calling its "new data
available" event handler.

5.2 Cart Coordination

 The Eve on-board system is designed to facilitate the
uploading, execution, and monitoring of the plans, created
by the scientist. To provide this functionality, it has been
divided in to 2 major components: the Coordinator, and
the Conductor.
 The Coordinator is responsible for initializing, tracking,
and maintaining communication channels for active plans.
The Conductor provides event scheduling and notification
for the active plans. Other minor components fill
necessary support roles such as metrics and logging
facilities as well as fail-safe mechanisms.
 The Coordinator component maintains a connection
with the ground-station and awaits messages. When a new
plan is uploaded, a session is created within the
Coordinator and expected resources are marshaled. A
Session ID is then sent back to the ground-station so that it
can communicate with the now-ready plan instance. Once
the plan (and its carts) have been instantiated, the
Coordinator turns the plan over to the Conductor and
awaits further instruction from either the ground-station or
the plan itself.

6 Editor
 The editor consists of seven major components: file
manager, plan handler, plan view/model, plan validation,
performance analyzer, display, and communication port.
 The file manager allows the user to open, display and
save an existing plan, including its graphical layout, the
connections between operations, and all associated
parameters.
 The plan handler is responsible for generating the plan
file for use by the ground station and on-board
components. Written in an Eve plan syntax language, the
file contains information about the plan layout, its
operations and associated parameters.
 The plan view, a graphical user interface, displays and
allows manipulation of the operations and their
connections. The plan model is the code representation of
these operations and their connections. The plan
validation checks for the correctness of the plan, in terms
of such things as matching input and output parameters.
 The performance analyzer provides an estimate of the
resources a plan is expected to require. This static
information comes from the metadata with each operation,
and includes such things as memory and CPU usage.

 The editor will also provide a display for other
information, such as estimated resources usage compared
to actual resources usage after a plan has been executed.
 The last component is the communication port, which
sends and receives information from the ground station.

7 Software Engineering on EVE

The EVE research team is guided by a flexible project
management plan, a high-level milestone schedule, and a
tailored set of well-defined software engineering processes
and procedures.
 The EVE development team wrote and baselined a
System Requirements Specification toward the end of the
project's first year. This document formed the basis for the
design phase and will be used to develop a test plan that
covers multiple phases of the development life cycle, such
as testing of individual subsystems, integration testing and
final product testing. The EVE Design Document
addresses functional decomposition, interface definition,
operational timelines, data definition, concurrency
considerations, consolidation, and test procedures. It also
documents the basic architecture of the system and is used
by the team as a development guide. During the ongoing
implementation phase, the team is using peer reviews, bi-
weekly technical team meetings, and other techniques to
ensure adherence to basic Quality Assurance processes and
project requirements. The project management team meets
weekly to monitor progress and look for signs of schedule
slips, cost overruns, and technical risk; and to recommend
appropriate risk abatement measures. Configuration
Management is being implemented through the use of
processes currently in place at ITSC.

8 Collaboration with Other Efforts
An emphasis on collaboration and reuse has been a priority
of the EVE project. The use of RT Linux is based in part
on work being performed by the ESTO funded Flight
Linux effort [7]. In addition, the team expects to benefit
from work in on-board scheduling [8] and sensor
modeling currently underway [9]. The team is also in the
process of incorporating techniques from other application
areas [10] and research domains [11].

9 Current and Future Project Plans
 The EVE system is currently under development and
testing. This effort will continue through most of the
second year of the project and includes implementation in
the RT Linux environment, and web based editor services.
During the third year, the emphasis will shift to use of
EVE with a full scale scenarios and a possible “Flight of
opportunity”, as well as support for sensor web and grid
environments, and incorporation of external scheduling
algorithms.

10 References
[1] Beaumont B., Helen Conover, and Sara Graves, 1996. “Information
Systems Research at the Global Hydrology and Climate Center”,
American Institute of Aeronautics and Astronautics Spaces Programs
and Technologies Conference, September 24 - 26, 1996.

[2] Conover H. and Sara J. Graves, 1999. “Promoting Science Data
through Innovative Information Systems”, American Geophysical
Union, January 1999.

[3] Ramachandran R., H. Conover, S. Graves, K. Keiser, C. Pearson
and J. Rushing, 1999. “A Next Generation Information System for
Earth Science Data”, The International Symposium on Optical Science,
Engineering and Instrumentation, Denver, 1999.

[4] Graves S., 1998. “Automating the Process of Information
Extraction in Digital Libraries”, Panel Chair. IEEE Forum on Research
and Technology Advances in Digital Libraries, April 22-24, 1998, Santa
Barbara, CA.

[5] Keiser, K., J. Rushing, H. Conover and S. Graves, 1999. “Data
Mining System Toolkit for Earth Science Data”, Earth Observation and
Geo-Spatial Web and Internet Workshop (EOGEO)-1999, Washington,
Feb 9-11.

[6] Graves S., 1998. “Creating an Infrastructure for Data Warehousing
and Mining”, RCI-NASA Applications of Data Warehousing and
Mining. Panel: Strategic Directions of Data Warehousing and Mining,
April 20, 1998, Santa Barbara, CA.

[7] Stakem, P., “FlightLinux: A New Option for Spacecraft Embedded
Computers”, 2001 Earth Science Technology Conference, Collage
Park, MD, August 2001.
[SRS Reference]

[8] Frank, J., A. Jonsson, R. Morris, D. Smith, “Planning and Scheduling
for Fleets of Earth Observing Satellites”, Earth Science Technology
Conference, Collage Park, MD, August 2001.

[9] Marinucci, T., A. Neelamegam, B. Tjaden, L. Tong, L. Welch, B.
Goldman, G. Greer, D. Kaul, B. Pfarr, “Sensor Web Adaptive Resource
Manager”, Earth Science Technology Conference, Collage Park, MD,
August 2001.

[10] Tanner, S., H. Conover, S. Graves, K. Keiser, A Framework for
Sensor Data and Product Processing, Workshop on
Multi/Hyperspectral Technology and Applications, Redstone Arsenal,
Alabama, February 6-7, 2002

[11] Tanner, S., K. Keiser, H. Conover, D. Hardin, S. Graves, K. Regner,
and M. Smith, EVE: An Environment for On-Orbit Data Mining, IJCAI
Workshop on Knowledge Discovery from Distributed, Dynamic,
Heterogeneous, Autonomous Data and Knowledge Sources, Seattle,
Washington, August 4-10, 2001.

